Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination

نویسندگان

  • Pauline Soulas-Sprauel
  • Gwenaël Le Guyader
  • Paola Rivera-Munoz
  • Vincent Abramowski
  • Christelle Olivier-Martin
  • Cécile Goujet-Zalc
  • Pierre Charneau
  • Jean-Pierre de Villartay
چکیده

V(D)J recombination and immunoglobulin class switch recombination (CSR) are two somatic rearrangement mechanisms that proceed through the introduction of double-strand breaks (DSBs) in DNA. Although the DNA repair factor XRCC4 is essential for the resolution of DNA DSB during V(D)J recombination, its role in CSR has not been established. To bypass the embryonic lethality of XRCC4 deletion in mice, we developed a conditional XRCC4 knockout (KO) using LoxP-flanked XRCC4 cDNA lentiviral transgenesis. B lymphocyte restricted deletion of XRCC4 in these mice lead to an average two-fold reduction in CSR in vivo and in vitro. Our results connect XRCC4 and the nonhomologous end joining DNA repair pathway to CSR while reflecting the possible use of an alternative pathway in the repair of CSR DSB in the absence of XRCC4. In addition, this new conditional KO approach should be useful in studying other lethal mutations in mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mismatch repair proteins MSH2, MLH1, and EXO1 are important for class-switch recombination events occurring in B cells that lack nonhomologous end joining.

In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction microhomologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) prot...

متن کامل

Robust DNA repair in PAXX‐deficient mammalian cells

To ensure genome stability, mammalian cells employ several DNA repair pathways. Nonhomologous DNA end joining (NHEJ) is the DNA repair process that fixes double-strand breaks throughout the cell cycle. NHEJ is involved in the development of B and T lymphocytes through its function in V(D)J recombination and class switch recombination (CSR). NHEJ consists of several core and accessory factors, i...

متن کامل

Normal development of mice lacking PAXX, the paralogue of XRCC4 and XLF

DNA repair consists of several cellular pathways which recognize and repair damaged DNA. The classical nonhomologous DNA end-joining (NHEJ) pathway repairs double-strand breaks in DNA. It is required for maturation of both B and T lymphocytes by supporting V(D)J recombination as well as B-cell differentiation during class switch recombination (CSR). Inactivation of NHEJ factors Ku70, Ku80, XRCC...

متن کامل

PARP-3 and APLF function together to accelerate nonhomologous end-joining.

PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...

متن کامل

Lack Nonhomologous End Joining Recombination Events Occurring in B Cells and EXO 1 Are Important for Class - Switch

In the absence of core nonhomologous end-joining (NHEJ) factors, Ab gene class-switch recombination (CSR) uses an alternative end-joining (A-EJ) pathway to recombine switch (S) region DNA breaks. Previous reports showing decreased S-junction micro-homologies in MSH2-deficient mice and an exonuclease 1 (EXO1) role in yeast microhomology-mediated end joining suggest that mismatch repair (MMR) pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2007